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The aim of this paper is to bring to the attention of 
Dusiness professionals the power of using free R 
software for practical optimization problems. We 
discuss the derivation of the traditional portfolio 
Selecion problem showing how R can depict the 
nean-variance tangency result with several 
Sophisticated extensions available. Another 
example is from optimization of ill-behaved 
Tunctions is illustrated with Rosenbrock's banana 
Tunction. Wiener-Hopf-Whitle model for dynamic 
SIOchastic optimization shows how to ConstruCt a 
Dehavioral model using regressions to study the 
actions of regulators. 

Hands-on Optimization 
Using the R-Software 

INTRODUCTION AND MEAN VARIANCE 

PORTFOLIO 
The special issue of this Journal is devoted to optimization. As a calculus 

tool, optimization mnethods have been well-known for over two centuries. 

Choice of an optimum investment portfolio has been formulated as a 

constrained (Lagrangian) optimization problem for many decades, with 

apopular version by Markowitz (1959). Vinod and Reagle (2005) describe 
a version of that model in matrix notation as follows. 

Assume that there are n possible assets in which the investor can invest 

her money. Given information regarding the past performance of 
investments in these assets, the investor must decide how much of her 

funds should be allocated to each of these assets. This is a stochastic 

(probabilistic not deterministic) optimization problem involving beliefs 
about uncertain future returns of assets, irrespective of past performarnce. 
We assume that using past returns, reliable forecasts of future probability 
distributions of returns of all assets are available. Initially, it is convenient 

to assume that asset returns are Normally distributed, so that means, 

variances and covariances describe the entire (multivariate Normal) 

density, without having to worry about skewness, kurtosis or other higher 
moments. 

For example, consider only two assets Band C. The random future retums 

might be denoted by random variables B and C, where the (forecasts of) 
mean returns are: m, and m,, forecast variances are:sfand s, and forecast 

covariance of returns is: COVp All are assumed to be available. The 
risk-adjusted returns can be easily computed if COV=0 from the two 
ratios: (m,/s) and (m,/s). Then the solution to the optimization problem 
is obtained by simply ordering the risk-adjusted return ratios and 
choosing the top (few) assets. If asset B offers the highest ratio, the optimal 
choice is to invest all available (money) funds in asset B, and nothing in 
assets C. That is, the optimal choice allocates the funds in proportion to 
the following weights w, = 1 and w, =0. The allocation of half the funds 
in each asset is stated as: w, = 0.5 and w, = 0.5. There is considerable 
generality in the solution above, since the available funds could be in 
any amount and any currency. The popular 'Sharpe ratio' commonly 



used by investors worldwide relies on the above solution, 
except that the risk adjusted return is cbtained by dividing 
by the standard deviation rather than the variance of 
returns. 

However, zero covariances and Normality or return 
distributions are strong assumptions that mar general 
applicability of the above solution based on ranking of 
Sharpe type ratios discussed in Vinod and Morey (2001, 
2002). Vinod and Reagle (2005) emphasize that probability 
distribution of returns is typically not at all Normal and 
Why one must use a more refined measure of risk based 
On the 'down-side' (lower hal) of probability distribution 
of asset returns, rather than blindy relying statisticians" 
symmetric measure (of scale) based on the variance (or 
standard deviation). In any case, the choice of the optimal 
allocation is correctly thought of as a choice of a vector of 
n weights w containing proportions which must add up 
to 1, since we assume that all available funds are invested 
in one of the n assets. 

Now we write the mathematical objective function for 
stochastically maximizing the risk-adjusted return of the 
entire portfolio associated with the allocation proportions: 
w. Let denote anx1vector of ones and m denote an n x1 
vector of average returns. Now the expected value of the 
randomn variable P'returm of the entire portfolio» based on 
the allocation w is readily defined. For example, with tw0 
assets it is E(P) = E(w,B + wC) = W, m, + w, m. In matrix 
notation, this is written as: w'm, where the transpose of a 
vector is denoted by a prime.The variance of the sum of 
two random variables is 

Var (w,B + w,C) = E[w,(B-m,) + w,(C-m)T ...(1) 
= w�s+ws+2w,w,COVab 

=wSw 

where w= {w, w} andS is the 2 x 2 variance convariance 
matrix with (s s) along the diagonal and COv as the 
common off-diagonal term. The variance expression in 
matrix notation is called a quadratic form. Of course, in 
general, S is ann xn matrix and w has n elements. 

Relaxing the unrealistic assumption of zero covariances 
among all asset returns is accomplished quite simply by 
using an S matrix with nonzero off-diagonal elements in 

the quadratic form. The Lagrangian objective function 
then is to maximize expected returns E(P) subject to some 
penalty for volatility Var(P) involving the quadratic form 
(1) and the requirement that elements of w be all positive 
and sum to 1. We write: 

max, (L)=w'm-(1/2)yw'Sw-n('i-1) ... (2) 
where y is Lagrangian coefficient, sometimes called the 

coefficient of risk aversion and n is the other Lagrangian, 
which depends on the size of initial capital. The first order 

condition satisfied by the solution of the maximization 
problemn is obtained by differentiating the expression (2) 

with respect to w and setting the derivative equal to zero. 
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By the rules of n matrix algebra, (hut m, 
L, and (ÝuSw/w) is 2Sw. Heence fhe solution 

We assume that the second order condition second derivative is satisfied. We discuss 
solutiorn (3) disCussed in Finance texts 
variance diagram (similar to Figure 1) of the 
theory, with mean return on the vertical axis: and varianrs on the horizontal axís. 

The graphical method makes a distinction between (n. risky assets and one asset representing risk-troa government t bonds. All n assets will have 

3 

their own. trer and variance values, leading to a two-dimensional s 
of n points in thís diagram. Since the risk-free return n. zero (risk of default) variance, it1 represents.apointon the vertical axis. When n is large, we can lump the scatter oa in a few columnns for the purpose of discussion. Then, to points representing highest return for each value of he variance will lie along the top part to each column. Ths assets Iying in the lower part of a column are 'dominated. in the sense that sensible investors will not buy then. Joining the tops of each such column traces a meat variance 'frontier, which will be concave (bows O:t 
The graphical solution is located along the set of all port along the line starting at the point representing risk-t 

return and ending at the point of tangency of the line w 
the concave top part of the frontier (See Fig. l). A point# 
the exact middle of this straight line represents 0.5 weight 
for both the best risky asset found by the frontier tangec: 
point arnd on a risk-free government bond. The Lagrangan 
Yrepresenting risk aversiorn will help determine the relatye 
weight on risk-free investment and the asset isy 
representing thepoint of angency. Arisk averse investcr 
will have a higher weight on government bonds. I have 
attempted to summarize certain important theorecat 
insights from the age-old portfolio theory. Once thee 
fundamentals are clearly understood, it is a simple mater 
of using better software to consider a solution for mure 
realistic practical situations with the help of modem 8 
software. 

This paper introduces some basics of the R software system 
freely available on the Internet at: (http:/ /www.* 
project.org/), with the Wiki h�lp system at: (http://wk 
r-project.org/rwiki/doku.php). R system is evere 
xpanding due to contributions by a world-wide 
Community of researchers in the form of contributed by a 
world-wide community of researchers in the torn 
contributed 'packages.' My personal notes about varncu 
tricks and pain in using R is a MS word file availabie on 

the Internet at: (http//www.fordham.edu/ecowmi 
vinod/r-lang.doc). A package called Portfolio' is use 

tor implementing the above theory and much more mi 
the recent Finance literature. Diethelm Wuertz 

Rmetrics Core team (http:/ /www. Emetrics. org) 



responaible for this wonderful Hel of dlozen 0F h0 

contributed packages to R all beginnlng with the lower 
According to the 47-page free online manual 

Wortfolio,pdr' describing the package, it in currently 

being 
tmjproved and we expect it to IAe lower partlal' 

variance 
defined I on the lower on the lower part of the 

pobability ofdistribution (where lsneN #0ccur) to measure 

risk, as 
discUSAed iin Vinod and Reagle (2005). 

The various 'Something' packaHeN COMe with both US 

and 
Internatlonal data useful for understanding the 

workings of the packages, For example, an illustrative 

frontier of Pigure 1 1 can be computed by LIslng the following 
snippet ofR. commands, Note that R is a line-by-ine 
interpretive object-oriented language which ignores 

material beyond the symbol 'W on any line. This. allows 
insert explanatory comments and instructions in 

our R code. The entire snippet can be copied and pasted 
into R to get the desired results. 

library (Portfolio) #you must first load this packagr 
into your R session 

Target Retum 
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0.035 

0.025 

0.015 

0.005 

Minimizing Il-behaved Functions Itis well known that 
certain functions are ill-behaved and various computer 
algorithms for finding the minimum (or maximum) of such 
unctions can fail to reach the correct global minimum. 
For example, consider Rosenbrock's banana function 
defined by: 

fu. y) = (1-x + 100y- . 

0.10 

Fig 1 Mean Varlance Frontier llustrated Using Portfolio Package of R 

# Loal Data änd onveet o time fetlea {hei 

Iata - a time iertea (data{amall ap.tn)) 
#pick 4 nall cap ompanieA 

... (4) 
Its 3D plot can be seen at (http:/en.wikipendia.org/) 
under (wiki/ /Rosen brock_function). The plot tverifies that 

this function is ill-behaved, showing long and narrow 

Hfom Jaitary 1097 to ecember 001 
Data [Datal, c"iÜKR�, "A" "YMI, "KR DN"| 

WAllow for unlimtted Sot ielling (mplyitiy heyative weighin): 
HConaralnta "ilort" 
HConatraint inWi nAaseta ") 

ipee porttoloee () #uet at default 
hetRlakPreekate 0.03 

WConpute Slhort Selliny Minimum Vatiarice Portfoio 
latugencyllortfolio (Data, Spee, Conatrainta) 
Wminvarlancel'ortfollo (Data, Spee ('onatrainta) 
#Portlollo Welght(a): 

Return 0.029| Risk = 0.096 

GYMB KRON 
0.2991 0.3014 0.0000 0,3995 

Irontler portfollolrontier ([Data, Spec, Constraints) 
#minvarlancePortfolio(tData, Spe, ('onstraints) 
frontierSlider (frontler) #new windew will pop up 
#this glvew several options, click on Tangeney PF 
tellck on llcder till risk-free rate in as desired 

BKR 

0,15 

Target Risk 

0.20 

valley shaped like a parabola, where its minimum lies. 
Since its global minimum is known to be at x =y= 1. This 
function is often used to test convergence of optimization 
algorithms to the global minimum. Rcomes with two built 
in optimization functions called 'optim' and 
Constroptim.' It is interesting that R folks are so contident 
about good convergence of these functions that the manual 
uses the banana function for illustration. Indeed the correct 
minimum is achieved by both, upon supplying the 
analytical derivatives of the banana function (details 
omitted for brevity). 
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Wiener-Hopf-Whittle Model for stochastic dynamic optimization In the late 1940's dynamic target seeking was important for military applications and Kalman filtering won the day. Its competition was the Wiener-Hopf model, where the solution was analyticand deemed too restrictive for military applications. Sargent's foreword to Whitle (1983) notes that Whitle's frequency domain methods are useful for "deducing closed form solutions for decision rules". Vinod (1990) derives a closed form solution to a'target tseeking'minimization regulatory economics. 
The regulated firm (e.g., electric utility) decides its productivity, fuel costs and prices p, whereas external market forces eventually determine the firm's net revenue T. The regulator (e.g., Public Utilities Commission) sets a 'fair' rate of return , which then is the target of a target seeking optimization problem. In addition to attempting to reach the target, the regulator expects thatprices charged by the utility will be reasonably stable over time. The 
variance of prices, V,= E(p,- p), can be used to measure such stability. 
The regulator also wants that the level ofprices measured 
by the average price p should be as low as possible. The 
Lagrangian objective function is: 

L =E(r,- +4V,+24,P. ..(5) 

where the Lagrangian coefficients satisfy >0 and ,2 
0. Note that the weights (1, h ) represent relative 
importance of the three terms as perceived by the regulator. 
The solution derived in Vinod's (1990) Appendix assumes 
that the regulated utility follows a linear decision rule 
recursion based on past profits as: 

where 

1 =b, + b,P, + b,y-1+E, ..(6) 
where E, denotes the error term, which is absent in the 
normative derivation. Regarding the prices charged to 
customers, the normative decision rule implied by Wiener 
Hopf freqneucy domain methods is: 

P =+C{-1-)+ C,(t;- 7) 
C =(5-b)/b, and C,= (K'b,) 

E-(A/2)+ (1/2)(4²-4)2 
A =b,+(1/b,) + (8;/4,b,) 

K, =48,/(3b) 

..) 

.. (8) 
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...9) 
..(10) 

...(11) 
where the bars denote mean values. If the error term is 
introduced, one can think of (6) as a regression model 

making b, and b, as regression coefficients of a behavioral 
equation (6) rather than those belonging to a normative 
decisionrule. 

Clearly, the normative decision rule is feasible only if the 
relative weights (1, 4 ty) assigned by the regulator are 
known. Unfortunately the expressions for coefficients b 

and b, from (7) to (11) are highly nonlinear and will have 

to be estimated from some starting values iteratively in a 

nonlinear least squares type algorithm. Perhaps, he 
behavioral estimates from regression ncan provide starting 
values for such iterations. Any differencet between Huch 
starting values and ultimate values measures the 

extent 
of the failure of f human agents to optimize. Vinod (1X, rewrites () as a second behavioral equation upon inserting (P,-P) =C|(-1-)+(C{(n-* R)tp 12) 

an error term u, as: 

Thus, we can estimate ea system of ( two equations (6) and (12). Their specification based on Wiener-Hopf nodel assumes that both firms and regulators s a are'rational in the sense that they try to maximize their own objectve functions. However, the error terms mean that the rationality is not perfect. 
Equations (6) and i (12) together yield regression Coeficient estimates of a behavioral model 

agents including regulators actually behave. It is of iner to estimate the relative weights [1, (V4), (2p comparable units representing estimates of rela 
importance of the three terms as acted upon by the regulators. Vinod's (1990) Table 1 has annual estimate ofrelative weights on (V,)representing the Don'tRot 

the Boae motive and (2P 4) as the consumer protection 
motive for Bell telephone data. It is interesting that between 
1963 to 1970 the weight on consumer protection was nea 
zero, which suddenly jumped in 1971 and remained 
somewhat high till the brea-up of Bell System in eartly 
1982 by anti-trust litigation. 
In R software the regression and any nonlinear systemis 
readily estimated by the function 'm' for linear regresion 
models and 'nls' for nonlinear least squares. The package 
Nonlinear' handles most nonlinear modeling including 
chaos. The R package 'systemfit fits a set of structural 
nonlinear equations. 

FINAL REMARKS 
This paper illustrates three optimization problems where 

R software system can make the task of finding the 
solutions and /or obtaining important (empirical) insights 
quite practical for anyone. Vinod (2008) provides R 
snippets as templates for extending dozens of practical 
problems in Econometrics. Our aim here has ben to 

introduce the reader to the power of the R system anu 

Several new packages available free for non-commercia 

uSe to anyone with an Internet access. In particular, We 

have shown in Section 1 how to use Portfolio packag 

for portfolio selection problems. Section 2 describes 

functions 'optim' and ConstrOptim' for all kinds of 

(constrained) optimization problems 
including 

proposes a way of converting difficult 
optimization Rosenbrock's ill-behaved banana function. 

Section 3 

problems into behavioral relations and using 
regressions 

to estimate them. .Such estimates can throw 
vimportant light 

64 

s problem from 

lused to describe ehow the 



on 
whether regulators are properly doing their jobs 

consistent with their rhetoric of protecting the Consumers. 
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